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This paper is concerned with the analysis of the solution set of the two-
< point boundary value problem modelling the avalanche effect in semiconductor

diodes for negative applied voltage. -Ths effect is represented by a large
increase of the absolute v alue of thwe drrent starting at a certain reverse

basis.\ we interpret the avalanche-model as a nonlinear eigenvalue problem

(with the current as eigenparameter) and show (using a priori estimates and a

well known theorem on the structure of solution sets of nonlinear eigenvalue

problems for compact operators) that there exists an unbounded continuum of

solutions which contains a solution corresponding to every negative voltage.

Therefore, the solution branch does not "break down" at a certain threshold

voltage (as expected on physical grounds). We discuss the current-voltage

characteristic and provA that the absolute value of the current increases at

most (and at least) exponentially in the avalanche case as the voltage

decreases to minus infinity.
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SIGNIFICA1CE AND EXPLANATION

In this paper we investkigate the mathematical model equations for impact

ionization in a semiconductor diode.- This effect (also called avalanche

generation) is characterized by a 4udden increase of the current flowing

through the device starting at a certain negative voltage. Physically, the

diode "breaks down" shortly after the onset of avalanche generation.

Therefore, it was conjectured that there is a threshold voltage beyond which

no solutions of the avalanche model exists. We show that this conjecture is

false; more precisely a continuous branch of solution along which every

negative voltage and every negative bias is assumed (at least once) exists.

Mathematically, the avalanche-effect only becomes apparent through an

exponential increase of the absolute value of the current starting at a

certain negative voltage.

,- .t F ! , t , F\. .. .
TO

r iisr 1but I ,~

Avm il
,f Ast ( 7. '

~eopJK

The responsibility for the wording and views expressed in this descriptive
summary lies with MC, and not with the author of this report.
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A 0NWLIUZAR UGUIVALU3 FROMMG NOOULING TMU
XVALACU E EFFU IN IINCOMDUC'O DIOD08

Peter A. Narkovich*

We investigate the (one-dimensional) boundary-valu. problem wihich describes the

perfouance of a semiconductor diode in the case of avalanche generation. The physical

situation Is as follows. A semiconductor in doped with donor atoms on the right side (n-

side) and with acceptor atoms on the left side (p-side) and a bias Is applied to the COul

contacts (see Figure 1).

pn-junction

Anode p-side n-side Cathode

Figure 1s Diode

War simplicity we aesme that the pa-junction is In the middle of the device, that the

doping profile (that is the difference of the concentrations of donors and acceptors) is

constant in the n-side as well as in the p-side and odd about the pn-junction.

A well-known phenomenon is the 'breakdoIn' of the diode due to Impact ionization

(avalanche generation, see Sue (1981)) under sufficiently large negative bias. This

'breakdown' is based on a 'sudden' increase of the current (as a function of the applied

bias).

To study the currant-voltage (J-V) characteristic of the device we Investigate the

basic semiconductor device equations describing potential and carrier distributions in the

*fechnische tnversittt Mien, Institut fur Angewandto und Numerische Nthematik,
Qushaustraese 27-29, A-1040 Mien, Austria, 2urops

Sponsored by the United States Army under Contract No. MAG29-80-C-0041.
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diode (see Van oosbroeck (I9SO), Use (0901));

(1.1) A2 n - p - D foieson's equation

(1.2) n' - n*' + Jn electron continuity equation -1 X I
a

(1.3) p, W 0#0' - J hole continuity equation

denotes the electrostatic potential, 1 is the electric field, n(p) the electron

(hole) density, J(.P) the electron (hole) current density and D the doping profile.

The equations (1.1)-01.3) are already in dimensionless form, the doping profile is scaled

to maximally one and the independent variable x to [-1,1] Zn our symetric MA

piecewise conetant case

r 1, 0 4 x C 1 (n-side)
( )-1, -1 4 x ( 0 (p-side)

holds. 2ft pa-junction is at x - 0.A2 (CC 1) is a scaling parameter.

Generally the current relations are given by

(1.5) (a) V- Re (b) .7 - -an p
where the recombinatloa-generation term R is a nonlinear function of no p, in, P &And

*' (the electric field). we assum that R is given by the avalanche-generation term

(see 8Se (1961), SchUts (1962))l

(0.6) R - Rb7 J ' ) - -sW*')(I + I 1 )

where a ) 0 is the electron-hole ionisation rate. a is strongly fielddependent.
aa

Commonly used a's are a(T) - ye , Q(T) - Ylrte * y,a 4 . For simplicity we

&ssme that a i C(10,11) + 10,Y], y ) 0 is the nonnegative functional

(1.7) Q(f) - 0(1 f1 1 ,1 ), 5 % (0,)] + (0,y], 0 e (C(0.) and nondecreasing

(fti ,bl s- @up lf(x)l). We will later on remark on the extension of results to more

realistic ionization rates.

The total current J is given by

01.0) j - J n + jP .
Noteo that J is a constant In [-1,1) because of (1.5).
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The boundary conditions (at the CGui. contacts) for (1.1)-(oS) ao

(1.S)(a) np 6. n- p- D - 0 at X a

wher 62 (t 1) oleo originates from the scaling and

(1.I)(b) +(1)-) V62 2 :

V e ia is the (scaled) voltage applied to the diode (details on the scaling aem be found In

Narkowich and Ringhofer (1982) end N1arkovich (1983)).

Because of our symmtry assumptions we restrain the investigation to °symotric'

solutions, i.e. solutions which fulfill

(1.9) (x) - - (-x), nix) - p(-x), Jn(x) * j P(-K), x e (-1,1

Another simplification is accomplished by employing the substitution

(1.10) n a 8120%, p . 82m-*,, j n - 62,0", p M -6 2O' Ov,

The system of equations obtained from (t.1)-(t.8) by using (1.9), (1.10) is

(1.11) 12#_ - 6 2 eu - 82,e*V - 1

(1.12) +e u°) " -(*')(Ie u + le vI) 0 4 x 1 I

(1.13) +ev°) - -. C9°)(Iotu'I + oevi)

subject to the boundary conditions

(1.14)(a) *(0) - 0, *(1) - a('I 
+  1 2 + 4 -4

28

(1.14)(b) u(O) = V(O), uM1) 
V

(1.14)(c) V'(M) - -u°(O), v(1) a 
V

-V V
The boundary conditions for u and v at x - -1 are u(-1) a 

"  
v(-1) 0 The

maximm principle (moo Protter and Weinberger (1967) applied to (1.12), (1.13) gives

(1.15) u , V )o n -1,1.

Therefore n and p are positive (as physically required for densities). A solution

-3-
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for V - 0 is given by u 1, v-= 1 and by eolvinq

(1.16)(a) 2 # 8 2e' -* 2_a- 1, 0 x C I

(1.16)(b) (o) - 0, (l) - n +

282

The solution (V,#,u,v) (0, ,1,1) where #e is the unique solution of (1.16)) is

called equilibrium solution. It implies J - 0 (the whole diode is in thermal

equilibrium).

The two-poLnt boundary-value problem ( 1.11 )-( I. 14) models the bias-controlled diode.

In sm cases it is more convenient to investigate the current-controlled device

represented by the equations (1.11)-(1.13) subject to the boundary conditions.

(1.17)(a) *(O) - 0, 1) - In(
! ' 

/1 + 4 
4 ) 

- In u(M)
282

(1.17)(b) u(O) - v(O), u(1)v(1) = 1, uMI) > 0

J J

(1.17(c) u'(0) - v'(0) . --

252 282

(note that (1.1
7

)(c) follows from

3 - in (0) + ip (O) - 82(O) u'() - 62' v'(O) - 22 u'(0) - -26 2v(0))

The problems (1.11)-(1.14) and (1.11)-(1.13), (1.17) are equivalent in the following

me. A solution (V1,#*,URV1) of (1.11)-(1.14) yields the solution (31,#*,oUV 1 ) of
2 *1 2

e an" s l ti n(1 * u ,v ) o
(1.11)-(1.13), (1.17) where 1- 1 2 # I - a 2 a I  and a solution W 2,*2,u2,v2) of

(1.11)-(1.13), (1.17) yields the solution (V2,1 2 ,u 2 ,v 2 ) of (1.11)-(1.14) where

V u2 (1).

There are tumerous analytical and numerical ivestigations of the (even multi-

dimensional) semiconductor device equations in the non-avalanche case (i.e. the

recombination-generation rate R only depends on n and p) (see Mock (1983) for a rather

-4-
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complete presentation of the results as well as for a collection of references). • or the

avalanche problem however there are (to the author's knowledge) only a few numerical

studies (see Schzts (1982)o Schite, Selberherr and Idtal (1962)).

In this paper we regard (1.11)-(1.14) and (1.11)-(1.13), (1.17) as nonlinear

eLgenvalue problems (in the sense of Rabinowits (1971), KrasnoelskiL (194) and

investigate the solution set for nonpositive current

(1.18) C - ((I.,,u,v) e (-.O] x (C 2(0,1])31(,u,v)

solves (1.11)-(1.13), (1.17) with .7 - 1)

and the properties of the current-voltage (3 - V) characteristic

(1.19) 3 ((VJ) e R x (-rO) there is (*,u,v)

such that (J,#,u,v) e C and V - In u(1))

The main theorem of this paper states that C" contains an unbounded continuum (i.e. a

closed and connected set in the (-0,1 x (C2 (0,1)) 3 -topology) emanating from the

equilibrium solution (0,# , 1,1) whose projection Into (-,O] equals (-,O] (that
o5

means C contains solutions for all J 4 0) and that the voltage V a as 3 

Therefore (1.11)-(1.14) has a solution (*,u,v) for every V 4 0.

This result holds independently of the upper bound y of the ionization rate a and

carries over to more realistic c's than given by (1.7). Therefore the conjecture that
1

the branch of solutions of (1.11)-(1.14) breaks down if y > holds (see fee (1981)) is

mathematically rejected at least for this model problem. We show, however, that the

magnitude of y has a decisive impact on the 3 - V-characteristic. For a 0

(nonavalanche case) the current fulfills c2V • J 4 clV for V • 0 while IJI increases
1

exponentially as V - for Y > -. (e1 f 2 
• 0 only depend on A and 8). The

exponential growth of the current represents the 'avalanche effect' and the diode 'breaks

down' in real life when the current gets too large. We also show nonuniqueness for V - 0

for all a for which a(*') is sufficiently large.

The paper is organized as follows. Section 2 deals with the a priori estimates needed

to prove existence of solutions for all 3 C 0 and Section 3 contains the oxistence proof

and conclusions.

-- , II I I-5-



2. A PRIzOa aUTZInT'A!

For the following we take 3 4 0.

At first we solve the oontinuity equations (1.12)-(1.13) for fixed w e ((0,1]). we

rewrite them as

(2.1)(a) , -Q W(,)(3 I + 11 1) o
n ft p 0C c1

(2.13(b) a- s(*'(ll I + 1IJ
p nt p

with the Initial values

(2.2)(c) J (0) 1 3(0) f

(2.1)(a) implies that 3 is nonincreaoing; since J (0) C 0 we get Jn C 0 on r0,1.

31(0) C 0 holds and therefore we (initially) solve

J' - lJI, , - al
nt p

(we mostly drop the argwent *1 of a) and get

x (0,11 if 0 • 4 2

(2.3)(a) j -- '( 2ax+ 1),3 -- ' (-2x + 1) for 2

2 p 21 2

1

For a > I we have to solve
2

J' - (J - a ), 3'- -(' l - J),i C x CI
n ft p p ft 2a

q n(I -- j1'Il, -;) - 0

and obtain

(2.3 (b) " " ( 2,-1 + 1), J (.2si-1 + 1) for x e [-, ic]
n 2 p 2 ; ]

u and v are computed from (1.10), (1.14)(b),(c):

-6-



- (2 3 + ?)d, for Xe [0,tj if 0 C 2.-
x 2

1I
(2. 4)f(a) u - V*(2 + 1dm for [ I] i f d

-1/2a 2mm-
a Rum12a + Ills + f ('lleaS' + 

11dS

x 1/2a

for xe[0,30 if a >I

f -]e(a)(-2aM, + S)d, for x e (0u1 if o 4 a 4-x 2

28 2 x2o2

t ~1/2a
e#lsl (-20&8 + 1Ids + 0 #(al) (-a esalrl + 1)de

x 1/2a

for x e [0,f1 If a >

Wse the condition u(O) v(O) to relate V and 3 and get

(2.5) V - area fonh(r : ),  I 4( 0

where the functional It C (:([0 ,11) + I is given by

(26)M -t fl It [el) go (-) + G'flsl f a (lsd,

0
with

- 2 a x + l 
for x e (0,11 if 0 2 a 1 and for x e (0, if a >

-e + 1 for x e if a>

- ~~ ~ ~ ~ ~ U 2 ':II IlII'Il - ...-. .. ..



2ax+1 for x e (0.11 if 0 < a < and for xe[0,1] if >
2 2

(2.6)(b) f (x) - 2 x-1 1 for x-e-[. I] if .
: ~~~~ ~2 2 o ,i

I e C(C 1 ([0,1J) R) holds. For the estimates of the current J in terms of the

voltage V we use

2
* (2.7) 1 R- 4 if (*) * 0

We collect the properties of u, v, in, 1 p and 3 in:

Les 2.1: Assume that 0 (1a( ')
XaW 2.1: holds. Then

(i) Z(#) ) (I - 2a) 1 e( a)ds + I e-(a) de > 0
0 0

(ii) 3 < 0 -> V < 0, J - 0 <-> V - 0 <,> u S v S 1.

(iii) Let V < 0 hold.

Then n < 0, J. 0 on [0,1)n p

(IV) u is decreasing on [0,1], e
v 

C u < e
"V

(v) v is increasing on (0,1], e 4 v 4 •eV.

Loma 2.2: Assume that a(Q') > is fixed. Then
2

(i) there is a # e C ((0,1]) such that i(#) 0

(ii) 3 - 0 -> (V - 0 <-> u E v 1), 3 < 0 <-> (V < 0, ( ) > 0 or

v > 0, I(W) < 0)

(iii) V - 0 <-> 3 a 0 or 1(0) - 0.

(iv) Let J < 0 hold.

Then J, • (0 on (0,1]; J < 0 on [0, -L), J > 0 on

(v) u is decreasing on (0,11, u O e
V

(vi) v is increasing on f0, 1-] and decreasing on [v ) V

Therefore, for any solution (V - O,*,u*,v*) * (V , 0,*e 1,1) of (1.11)-(1.14) (with

y > -) I(#*) - 0 has to hold.

We nov turn to Poisson's equation (1.11) subject to the boundary conditions

(1.14)(a). Differentiating (1.11) gives

(2.8)(a) A2($) - (n + p)#' + J, 0 C x C 1

and (1.14) implies

~-8-
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(2.8)(b) ( o0)) = - -., (*'C)l
° 

- 0

The maximum principle (see Protter and Weinberger (1967)) yields

Lemma 2.3: 1 C 0 implies *' ) 0 on (0,1] and V < *e(1). Thus the a priori bounds

(2.9) 0 4 *(x) 4 *0) = 0(1) - V, x e (0,11

follow from J 4 0.

Differentiating (2.8)(a) and using (1.11)(a) yields

(2.10)(a) A2  H [In + p) + W2 e.2]*" + (W.)2 + ( n . J )W, 0 < x < 1n

(2.10)(b) #"(0) = 
- - *"(1) = 02

From (2.3) we conclude that 
3n - 3 C 0 in (0,1] for J < 0. Since *' ) 0 we obtain

Lemma 2.4. J -C 0 implies on [0,1] and therefore

(2.11) n(x) ) p(x), 0 C x < I

holds.

Proof: z = - is a lower solution of (2.10) and (2.11) follows from (1.1) (with
A2

D -= 1 on [0,1]).

We now derive upper bounds for n.

Lemma 2.5. Let J C 0 hold. Then

(20 + 1)(1 - x) for x e [0,1] if 0 < a Y

(2.12) n(x) < +/ + 4 -. + (e2a-1+)(1 _ x) for x e [-L 1] if a >
22 2a'

1 2x +. (e 2a-1+ 1)(,

for x e [0, - ] if a>
2a 2

Proof. We multiply (2.4)(a) by 62ev' (getting n) and estimate e*(x)-#(e ) C 1 for

a ) x (# is nondecreasing). (2.12) is then obtained by integration and estimating

1 -2a(1-x) x
2a

In the case of zero generation (a - 0) we obtain upper bounds for n and p which are

independent of J and V.

-9-



Lsma 2.6. EAt a V 0 and J 4 0 hold. Then #0 4 0 on [0,1] and

(2.13) O(x) C n(x) C p(x) + 1, 0 C x C I

(2.14) 0 (n(x) + p(x) ,/, ' 44, 0 4 C 4 1

hold.

Proof. a 0 Implies J zJ z I and therefore - 0 is an upper solution of

(2.10). (2.13) follov from (1.1)(a). Also (n + p)- *'(n - p) holds. Thus n + p is

nondecreaming and n + p n(1) + p(1) - / + 464 follow.

We now derive lower and upper bounds for * using the estimates of n and p.

Lma 2.7. Eat 3 4 0 hold. Then

18 2
(2.15s) €(x) • (*(1) + -7-)x - -, 0 x < 1

2 2A

follows. If a S 0
2(2.16) (x) ) - -- + ()

2A 2

holds.
2

Proof. +(x) ((1 + )x - - solves
2X 2X

x 2_--, (0) - 0, ;(1)-*(1)

leama 2.4 implies that i is an upper solution of (1.11)(a). For a 3 0 we obtain by

integrating V 4 0 # (1) < *'(0) and from *" ) -
.X2

2 2
#(x) 2 .- + *'(O)x • - A + (1x

2A2 2X2

To get a lower bound for * in the avalanche came we prove

lema 2.8. et J < 0, 1,1 • K1 hold. A1o let 0 < C < 1 be such that ale5 )o 2

where Kit 12 only depend on X, 5 and Y. Then

1 1

(2.17) 0'(x) ) + O(x) - , 0 4 x C 1
S+ go(x) 

/I-,C

holds where Il(0,1) (K3 (13 only depends on 1.5 and Y) and

-10-
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fI
(26 + 1)(1 - x) for x 1 (0.1) if 0 o g -g

2

) -a (26-1 +ofor e , 1] i 6.

o 11 22-1 2s i

-2x + (e +. 1)I1 - -)for x 6 0 , hi if a

Proof. The Lemas 2.4 and 2.S imply

____ 2 k..( 41 + 44

We now choose c such that 1 + I 1+484 < IJIe. Thus C C + g Wx holds.

Obviously the solution y() 0) of

(2 .19 ) (a ) 
A2  

"  " 4. g (x ) )y " I

(2.191(b) Y'(0) - y(1) 0

is a lover solution of (2.8), that means 0 C y 4C # holds on [0,11. For large 1ji the

problem constitute* a linear singularly perturbed (Neumann-type) boundary value problem
2

with the reduced solution (obtained by setting to zero)

1

Yr + go l

A standard singular perturbation analysis (se Howes (1978)) which takes the possible
1

smallness of t into account (y r(1) - 1 II) gives

ly - yr
I[0 ,1

]  [3 1

whenever IJI ) Kj, Me1' ) K2 . This implies (2.17).

A lower bound for * follows by integrating (2.17):

m I m f



Lenma 2.9. Let the assumption of Loma 2.7 hold. Then

L 2a + I I (2a 4 11 - )

for x e (0,13 if 0 c a c

(2.20) ) U(s)14 + 2  for x e [0, 1 f if a >

L + In ( 2 I
, +e2a.1 + ( (eU 1 + 1)(1 x) + C

for x [, 1 if a
2a 2

holds where Il(, 0 K(3  and L1, L2, L3  only depend on Y.

Since C can be made arbitrarily small when 3 (still keeping lJi large)

the Lemmas 2.8 and 2.9 imply that 0*'1) 14  and *(1)(; 5 L became

unbounded as J .

We also need an upper bound of *':

Lami 2.10. J 4 0 implies
(2.21) (0 i)*' • K6elvI + 1)

where 6 only depends on A and 6.

2 vProof, (2.4)(a) implies n + p N n 0 8 . Thus the solution v of

)2_. 82.Vw MJ3, V'(0) - 0-w - -- -, (1)-0
A2

is an upper solution of (2.8). Therefore

'(x) 4 vx) - -V J~ ~cosh (8 V/2(1I - x))

a 2 X6eV/2 *Lnh(_ eV/ 2 )

and (2.21) follows since V • *,(1).

we now employ the derived bounds to get a priori estimates on the current-voltage

characteristic.

Theorem 2.1. Assume that (J,*,u,v) e c_ and (V,J) e J'. Then

(2.22) C1lV1 4 'J1 4 c2 1V1 if a(4')= 0

-12-
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(2.23) CllVI 4 1.1 4 0I' 1 - -l) I 0 < s(W) 41

1

holds. If (*) W ) then

(2.24) C4(1 e-21Vl )eVlO - 1/21) 4 D 4 D exp((S + 0)(e + 1)lVI)

holds for W((') a0 vith ome a0  I and every 0 ) 0. if s() ) a then
2 0 0 0

(22)-2IVI lvi 2*-1(2.25) C(1 - e )e l 4 P.1 4 D enp((S + )(e 1)IV)•

The constants C1,...,C S  only depend on A , and Y. 0 depends on ).,8,y and V.

0 10ro f O€ ( a n d * 9 0 I mlp ly 0 4 Il( k) C 2 f c a h ) s a nd 2 . 1 5) . 2 . 7 ) y ~ e ld ,

Thus

21

0 slnh(s) * - )
22

and the lower bounds for M3 In (2.22), (2.23) follow. a a0 Implies

11

1(#) - 2 Jcosb *Wuds and the estamate (2.16) give

jah(1) -

(l) - -
21

when II is so large that #1 ) 0. We derive (using (2.7))
2)2

a2'--VI h(o(1 - 2)

Sit(s) - -

212 II

anid (2.22) Is proven. IFor 0 4.•4 1 we est~mte

-13-
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+

I

0

Thus

21V1 2
1 -a

Iand the upper bound in (2.23) rollows. tier let e(9) ) 5" Then, minoe 9 is

nfcroaing and .Inc. 9,1x) is positive in [0, k) and negative in (- , 11

I W 4(f1do+ Re Wa1(9) <1 f [aleds +~ eal/ ) g6 l( d "

0 0

+1 + , (1/2e) 1 +.L. -

(fU  > 0 In (0,111) holds. The function h(Q) - 1 + - - 1 has a unique sero

a0 e 
(2, 1). 

Thus

e2 , 
*

0

I M.

holds. If X(#') > 0 the lower bound in (2.25) follows and the lower bound in (2.24) (also

for I(9) l 0) is implied by (2.15) which gives

*( I

Lemma 2.9 implies that 'V a Jm 3 -0 and therefore I(9) 4 0 can (for 3 4 0)

only hold for J31 C F, where F depends on 1,8 and y. This proves the lower bounds

In (2.24), (2.25).

(2.20) yields (1) - 9e(1) - V A L + in 1. we set - I1,1 1/ 5An fore 3 0 2-1 + 1

0 < a < and obtain the upper bounds in (2.24), (2.25) for 131 muff. large since

V 4 9e(1) holds.

Since lia 2.0 implies that e(#') + y as 3 (or as V * -m). The theorem

proves that the current 3 increases (in absolute value) at least (and at most)

exponentially am V. in the avalanche came y > 1. For werO generation (y - 0) the

-14-
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increase is at moot (and at least) linear. For the Intermediate came 0 < y 4 ! the

increase is at least linear and at most exponential. The author conjectures that the

distinction of the cases ' 4 y < a and Y ) a only comes in for technical reasons and2 £0 £0
that (2.25) holds for all Y ) 5.

3. RXISTICE THIMOUI

We need the following

Lemrs 3. t Zt v be the (unique) solution of the problem

(3.1)(a) w a - a(x)e W" - b(x)dv' Il + f(x), 0 4 x 4 1

(3.1)(b) W(M) - Of' v(1) - I1

where a,b 6 C((0,11)r a.b > 0 on (0,11s n I. Then v - v(n,o,,1 11 , f , *) regarded an

mapping from it3 x C(1 (0,11) Into C ((0,13) is completely continuous.

Proofs, We take 11 (3,111, PO • (0,ja0], i e (• I.1  and denote

a 3- mn a(x), a - max a(x) (analogously for b). 7hen the unique solution v of

Is -w
vj - ;e - be + Il(01 ]1 0 4 x C 1

V (0) - *0# Is I -

is a lower solution of (3.1) and the unique solution w2 of

v; aeW2 " 
-

2  
- If1[0,11  0 x 4 1

v 2 (0) -"0 ; 2 (1) ;I

is an upper solution of (3.1), i.e. w, v C 2 on (0,11 holds. Since

Iv1 • ae + he + If I.1]0,1

3 1 1holds, Ascoli's theorem Implies that w s a K C ((0,11) + C (10,13) saps bounded sets

into precompact sets. The continuity of v Is Imediate.

Now we prove the basic

-IS-
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Theorem 3.1, Itor any y ) 0 the solution met C" of (1.11)-(.13), (1.17) contains an

-2 3
unbounded continuum C (in the (,01 x (C (10,1)) -topology) emanating fro the

equilibrium molution (0,001,1) whose Projection into (-,,0J equals (-,0J (i.e. C

contains a solution (J,0,uv) for *very J 4 0).

Proofs We regard V - V(JO) (given by (2.5)) as functional V s (-,0j x C 1([0,1]) * I

The continuity of I Implies the continuity of V. Using (2.3)-(2.5) we rewrite Poiseon's

equation (1.11) as

(3.2)(a) i2,- - ", V U0 )-  - a2, 0- (J.*) - + * IJIG()(W), 0 ( x 4 1

(3.2)(b) #(0) - 0, #(1) - * (1) - V(J*#)

eth

(3.3)() y(0)( - do a(1 doY(, *

II

(note that I nJ InuI are Vpnd nt of J, they only depend on a(*) i an

N). G I C1([0,11) C 10,11) is continuou since a S C 1 (0,11) * M0Y] is continuou.

we oft 0 " *o + and rewrite (3.2) as the fixed point problem T (J,#) -- mee

y o Tpl ,) i s dfind a the tniqge solution of the problem

(3.4)(a) A ,ya " 2)ep(y + * + V(Je 4 O2f

- 42  €ll(- toI) - V(J,* e 0 * )) - I - 1 2 t; + Mao 0. + 8), 0 4 x 4 1

(3. (b) y(0() - 0, y) - -V( ,$ e + 3)

Loe3.1 ands the continuity of V and 4 imly that T i (*m,0) x C 1 (0,1)) is

completely eentt-mm. V(0,v) 1 0 and therefore y T (0,n) is given by the solution of

MS.S)1 ly * -2 0ey 4 e - 62e -" e - 1 - 00e 0 4 x 4 1

(MS)M) y(0) o M -() 0.

y 5 0 follm. Prom Rabinoitz (1971, lheorom 3.2) we conclude that the solution set of

T(J,) - # contains an imbomusd continum 11 (in the (-,0] x CI([0,1])-topology).

heorem 2. 1 and Isu 2.3 Imply

-15-



IYI -S rnaa(to), "CL)

and

-# a # a (1) -*e + IVl

tnma 2.10 yie(lds
.4, + '• l~(J 1) -,

We conclude from theme estimates

I I *lN N 1 I + a /cl + C * • / C 1fall] (0,11

where N > 0 is independent of J (and V). lno. C is Mnbomded it Me to omt&La

solutions (J,#) for all J 4 0. The statment of the theorem follows by obeerving that

u and v a given by (2.4) are oontinuou; as fotio~e of (J,#) in the

(4,0] x C1(tool]) -topology/.

Temst Imlportant Impliation of thorem 3.1 Lot

Theotre 3.2t Po any Y )o 0 the aurrent-voltage caracteritic J contins a continuous

curve r emanating from (0.0) Woe projection . Into the -axle equals (-,G) and

who" projectin r. into the V-ax~s fulfills

(3.6)(ba) (4,01 £ (-e,(1)I for o c 5

proof a Theoren 3.1 Implies that J" aontains a ontinuum 0 emanting from (0,0)

who"s pcojection into the 3-axis equal. (-.]. From lema 2.9 we conclude that

(1) - 0 (1) - V is positive and malboaded as J , -. tame 2.1, (11) Implies that
1

V 4 0 for J 5 0 and 0 y 4 ;. Therefore (3.6)(a) follows. (3.O(b) is Concluded by

noting that #(1) (1) - V 3 0 for 1 4 0 holds (ae tmma 2.3).

The obviume conequenoe for the solution met

(3.7) 0" - ((U,*,u,v) 6 (-,#] x (C2 (0,1)) 3(0.u,v)

@ove (1.11)-(1.14) for V 0 U)

of the voltago-oontrolled diode io

-17-



Corollary 3.1 D0 contains an unbouned continuum F aontaining (0,90 v*.u*) whoe

pro ection into (-,01 equals (-,0).(*e,u*,v*) - (9,1,1) if the equilibrium solution

Is unique (e.g. for 0 4C y 4 ). J C 0 holds for every (V.,,u,v) 0 F. (G contains a

eolution for every V C 0).

We naw show that multiple solutions of (1.11)-(1.14) for V - 0 can occur.

Theorem 3.3 Assue that a(#..) ). a() I where a l 0 only depends on A and 6. Then

there la solution (O*,u,v*) of (1.11)-(1.14) for V - 0 which Is different from the

equilibrium eolution (9 *1,1) and 3* - 62  '(# ), - 629*(v.). C 0 hold.

Proofs We obtain from (2.6)

1 1

I($) - 2 ( cosb h(s)4s - f h (a) Binh *(W)do)
0 0

where

{2&x, 0, 4 x " it

2ax-1,

Obviously ha(x) ) 2ox on [0,1] and therefore

1 1
1(fl) 2 (f coh #(*)do - 2a f a Binh #(s)ds)

0 0

holds. Choosing a such that

I
cash % (a)das

2 21
1 0 Binh 9 1(8)ds
0

Implies () ( 0. hus there is a neighbourhood N of 0 in C ((011) withL~l~ee

1(0e + #) < 0 for # e N. (2.5) implies V(0.,a + #) > 0 for (J.#) t-O,0) x N.

Since the continuum 1 (used in the proof of Theorem 3.1) emanate in (0,0). The

Intersection of 2" and ( -,0) x N is not empty. This mplies that there are solutions

of (1.11)-(1.13), (1.17) for 3 < 0 for which V > 0 holds. Since V is negative for

-IS-



J < 0, IJI sufficiently large, there has to be (J,0*) • *, 1 0 0, with

t(* 0 *) 0 0. This gives V(j,9o + 9*) - 0 and Theorem 3.3 follows.

The condition 1 < 0 implas that J" is not contained in (-n,0J2  (m

Figure 2).

J*

Figure 2. Qualitative structure of the J - V-cheracteristic for 1(*.) < 0.

Hoever, I( 0) 4 0 in physically unreasonable and it is not clear whether the

nonuniqueness of the equilibrium solution prevails if 1(%a) > 0.

IWe conclude from the Theorms 2.1 and 3.2 that the avalanche cae Y > y is

1
distinguished from the nonavalanche case 0 4 y 4 - by a more rapid decrease of the

current J as V (see Figure 3).

V

Figure 3. Qualittve truoture of the 3 - V-charateristic for
various y's (Z(9 e) > 0 is assumed) for reverse bia.

-09-
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Sremark that an investigation of (1.11)-(1.13), (1.17) for nonnegative current can be

done in a similar faahion. A relation of the term (2.5) (with a different functional 1)

holds and the existence of an unbounded continuum of solutions e follows as1i. the proof

of Theorem 3. 1. To conclude that I
+  

contains solutions for all J A 0 additional a

priori estimates have to be obtained (since the estimates In Section 2 only hold for

3 C 0). for the case a 0 thes estimates are given in Mock (1983), Markowich (1983).

Finally, assume that a is not a functional on C ([0,11) but simply a function

(3.8) a i 3* (0,y]. a is continuous and nondecreasing, such that the ionization rate

a( '(x)) is space-dependent. Then (2.4)-(2.6) have to be modified by substituting 'as'

In the intgrands by f aW(())dm and in the integration intervals by that value
0

e 6 (0.1 for which f a('u)s--holds. Theorem 3.1 still holds. By estimating
02

(2.12) in terms of y an analogue of (2.18), (2.20) (also in terms of y) Implying

'#1) + - as J - 1' is obtained and Theorem 3.2 and Corollary 3.1 follow. The

estimates of the current-voltage characteristic given in Theorem 2.1 for 0 4 y < - still

hold. The avalanche-estimate (2.25) (with a in the upper bound substituted by y) holds
-0 2/ITI

if for example a(T) A a e with 01 muff. large and 6 2 suff. "l1.
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